TDD	Confidential	Arbor
[image:]
[bookmark: _GoBack]Technical Design Document
[image: logo_revised.jpg]
Version 2.2
	Position Title
	Name
	Signature

	Assistant Producer
	Jason Orsatti
	

	Game Designer
	Grace Blessey
	

	Level Design Lead
	Josh Weeks
	

	Software Lead
	Casey Donnellan
	

	Art Lead
	Matt Musante
	

	Level Designer
	Nick Urko
	

	Level Designer
	David Skaggs
	

	Level Designer
	Al Nachman
	

	Level Designer
	Jaddua Ross
	

	Artist
	David DeCoster
	

	Artist
	Adriana Clonts
	

	Artist
	Brian Wells
	

	Software Engineer
	Ben Pope
	

Document Revisions Table
	Version
	Description
	Requestor
	Date

	0.1
	First Draft
	Jason Orsatti
	7/1/11

	1.0
	Milestone 1 Version
	Professors McCoy, Rosemond
	7/5/11

	2.0
	Milestone 2 Version
	Professors Rosemond, Stringer
	8/22/11

	2.1
	VS Version, revised based on professor feedback
	Professors Rosemond, Stringer
	10/6/11

	2.2
	Final Version, component updates
	Professors Clune, Stringer
	12/9/11

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
Table of Figures	6
Project and Motivation	7
Scope	7
End Product	8
Mechanics	9
Deliverables	10
System Requirements	11
Target System	11
Minimum	11
Recommended	11
Development System	11
Resource Budget	12
CPU Execution Time Estimate	12
Memory Utilization Estimate	12
Assets Budget Estimate	12
Art Assets Budgets Estimate	12
Acquired Technology and External Tools	13
Art Creation	13
Software Engineering	13
Level Design	13
Miscellaneous	13
Component Descriptions and Risk Assessments	14
Votive:	14
Sacred Bulb:	14
Pillbug:	14
Slug:	15
Snapdragon:	15
Camera System:	15
Checkpoint System:	15
Software Configuration Management	17
Naming Convention	17
Category/File Formats	17
Build Plan	18
Backup Routines	18
Version Control	18
General Steps for Committing to Source Control	19
SVN Client	19
Checkout from the SVN	19
SVN Folder Structure	19
Updating from the SVN	21
Adding to the SVN	21
Committing to the SVN	21
Resolving Conflicts	22
Quality Assurance	25
Component Testing	25
Integration Testing	25
Kleenex Test Plan	25
Bug Tracking	26
How to Use Issue Manager	26
Arbor Questionnaire	30
Tutorials	34
Advanced Scripting - UnrealScript	34
Anim Tree	34
AI	34
Basic Scripting - Kismet	34
Build/Installer	34
Lighting	34
Materials	34
Physics/Collision	34
Particle Effects	34
Matinee	34
Terrain	34
UI/HUD	34
Weapon Set-up	34
Sound/Music	35

[bookmark: _Toc305614588]Table of Figures

Figure 1- Deliverables	10
Figure 2 – CPU Utilization	12
Figure 3 – Memory Utilization	12
Figure 4 – Art Tools	13
Figure 5 – Software Engineering Tools	13
Figure 6 – Level Design Tools	13
Figure 7 – Components	14
Figure 8 - UnrealScript Files	17
Figure 9 - File Format	17
Figure 10 - Naming Conventions	18
Figure 11: SVN Checkout	19
Figure 12: SVN Update	21
Figure 13: Adding to SVN	21
Figure 14: Committing to SVN	22
Figure 15: SVN Conflicts	23
Figure 16: Using TortoiseMerge	24
Figure 17 – Issue List	26
Figure 18 – Add New Issue Command	27
Figure 19 – Add New Issue Dialog	27
Figure 20 – Mark an Issue Command	28
Figure 21 – Mark an Issue Dialog	28

[bookmark: _Toc305614589]Project and Motivation
Arbor is a gloomy, enchanting, atmospheric 2D side-scrolling puzzle platformer with playable foreground and background zones set within the ruined Temple of the Arbor Goddess. Whatever civilization once created the massive structure has long since perished. To rejuvenate her ruined temple, the Goddess brings to life the last of a legion of tiny clay figures carved to serve her. This humble servant, simply called Votive, must brave the wastes now overrun with Dark Miasma, crumbling architecture, and corrupt creatures. He must gather and transport Sacred Bulbs to the plots of Hallowed Soil that still remain in the Temple. Only then can the Bulbs sprout and flourish, and the Goddess restore life to her quickly failing world.
The player accesses each level of the game from the central Hub, and uses platforming and puzzle-solving skills to progress forward through the levels in search of Sacred Bulbs. Upon finding a Bulb, the player carries or rolls it past more obstacles to a plot of Hallowed Soil. Planting every Bulb within the level completes the level and restores life to that section of the temple.
Votive uses the power of the three Magic Leaves that grow in the Temple to platform through the level. The Bounce Leaf shields Votive’s fragile form from damage when he jumps off the Temple’s stone walls. With the Glide Leaf, he flies across large gaps and rides up vents of air. Finally, the Vine Leaf allows Votive to swing up to high ledges and across dangerous pits. As he explores, Votive collects the Shards of other broken votive figurines so that the Goddess may return them to life someday as well.
Votive also interacts with the creatures of the Temple. Dangerous Slugs and Snapdragons kill Votive if he does not avoid them. Timid Pillbugs curl up when Votive approaches, allowing him to pick up and carry them. He uses Pillbugs to weigh down Buttons and feed Snapdragons, thus granting him access to new areas.
Arbor has a dark and spooky feel rendered in stylized realism. The Temple Grounds are enormous and create an intimidating atmosphere. Players feel alone and overwhelmed by both the sadness of the Temple and the beauty that must once have been.
[bookmark: _Toc305614590]Scope
From a technical perspective, Arbor is not a complex game. Kismet scripts and physics drive the majority of interactions in the game. Nearly all technical development focuses on controlling Votive and refining that control. Other areas include solving corner cases where physics can break down and impede progress, enemies, and building the tools used to create levels.
Arbor uses the June 2011 version of UDK. The project largely utilizes prismatic rigid body actors to constrain the gameplay to two dimensions. One very important goal of this project is to extend the entire code base from UDK itself and not use any code from Unreal Tournament. UT3 is an excellent reference for how to write UnrealScript, but extending it, as in previous projects, actually makes things far more difficult. Deriving all components from UDK will create some extra work for the programming department, but the net benefit is still positive, as it will drastically reduce the incidence of bugs appearing from hidden dependencies within UT3.
With sixteen weeks to complete production, there is virtually no chance we will run out of time to implement features. The programming department’s goal for this project is feature completion in eight weeks. This leaves another entire eight weeks for aesthetic refinement, performance tuning, and bug squashing.
[bookmark: _Toc305614591]End Product
Votive has a number of innate abilities as well as three special powers. It is capable of running, jumping, and pushing the bulb as well as picking up and tossing pillbugs. Votive can also pickup the sacred bulb itself, although its movement is severely impeded when doing so. Votive can also acquire three special abilities by picking up magic leaves spread throughout the levels. First, the glide leaf allows Votive to glide through the air, effectively slowing its fall and extending its jumps. The bounce leaf allows Votive to bounce effortlessly against floors, walls, and ceilings. Finally, the vine leaf allows Votive to launch a vine at certain locations and swing back and forth.
A number of environmental objects serve to aid Votive’s progress through the game. First, there are magical leaves growing at various points throughout the world that Votive can pick up if it is close enough. There are also doors in the background that Votive can use to travel back and forth between different layers of the game world. Air jets propel Votive in a given direction when it is using the glide ability, while grapple nodes allow Votive to use its vine to swing from one location to another.
There are other objects, however, that impede Votive’s quest as well as enemies that attempt to destroy it outright. Razor sharp spikes are plentiful throughout Votive’s world as well as deadly toxic pools. Dark Miasma, an ominous cloudlike substance robs Votive of its leaf upon contact. Evil slugs and monstrous snapdragons also stand in Votive’s way, each capable of destroying it with ease. Perhaps most dangerous of all, however, is Votive’s own fragile nature: the clay figurine can survive only the slightest of drops without shattering.

[bookmark: _Toc305614592]Mechanics
Player Mechanics
· Run
· Jump
· Push
· Pickup Pillbug/Sacred Bulb
· Pickup Leaf Power
· Throw/Drop
· Glide
· Bounce
· Vine
Entities
· Snapdragon
· Sacred Bulb
· Pillbug
· Slug
Environmental Objects
· Air Jet
· Dark Miasma
· Kill Volumes
· Grapple Nodes
· Collectible Shard
· Hallowed Soil
· Doors
Other Systems
· Checkpoints
· Camera System
· HUD
· Main Menu
· Pause Menu
·

[bookmark: _Toc305614593]Deliverables
SkyGate provides a DVD, which automatically installs Arbor on a user’s computer. SkyGate’s development resources, including all art, code, and level assets are available via SVN at: http://ghsrv.ecsrv.smu.edu/svn/c15_Team_skygate
	Asset
	Description

	Autorun.inf
	Automatically starts installer from DVD

	ArborSetup.exe
	Installer executable, installs to C:/UDK/Arbor by default

	Arbor.ico
	Installer icon

	Readme.txt
	Installation notes, other cogent information

	ArborTrailer.wmv
	Game Trailer

	Box
	

	Poster
	

	Manual
	

[bookmark: _Toc305614653]Figure 1- Deliverables

[bookmark: _Toc286601498][bookmark: _Toc289047336][bookmark: _Toc305614594]System Requirements
[bookmark: _Toc263948880][bookmark: _Toc286601499][bookmark: _Toc289047337][bookmark: _Toc305614595]Target System
[bookmark: _Toc263948881][bookmark: _Toc285308135][bookmark: _Toc286601500][bookmark: _Toc289047338][bookmark: _Toc305614596][bookmark: _Toc263948883]Minimum
· Processor: Intel Pentium 4 1.3 GHz or AMD Athlon XP 1500
· Memory: 1GB or more of RAM
· Hard Drive: 25 GB free hard drive space
· Video Card: NVIDIA® GeForce® FX or ATI Radeon™ 9500 video card or better
· Operating System: Windows XP 32bit (SP3)
· Peripheral: X-Box 360 Controller
· Sound: DirectX 9-compatible sound card or motherboard sound capability
[bookmark: _Toc263948882][bookmark: _Toc285308136][bookmark: _Toc286601501][bookmark: _Toc289047339][bookmark: _Toc305614597]Recommended
· Processor: Dual-core processor, such as the Intel Pentium D or AMD Athlon 64 X2
· Memory: 2 GB RAM (4 GB for Vista users)
· Hard Drive: 25 GB free hard drive space
· Video Card: 3D graphics processor with Vertex and Pixel Shader capability with 256 MB NVIDIA® GeForce® 8600 or ATI Radeon™ 2600 or better
· Operating System: Windows Vista 64bit (SP1) Windows 7
· Peripheral: X-Box 360 Controller
· Sound: DirectX 9-compatible sound card or motherboard sound capability
[bookmark: _Toc286601502][bookmark: _Toc289047340][bookmark: _Toc305614598]Development System
· Processor: Intel dual-core 2.4GHz
· Memory: 4 GB RAM
· Hard Drive: 451 GB Hard Drive
· Video Card: ATI Mobility Radeon HD 5870 with 2778 MB RAM
· Operating System: Windows 7 Ultimate Edition (64-bit)
· Software: see Technology and ToolsPeripheral: X-Box 360 Controller, Mouse, Keyboard
· Sound: DirectX 9-compatible sound card or motherboard sound capability

[bookmark: _Toc289047341][bookmark: _Toc305614599]Resource Budget
[bookmark: _Toc289047342][bookmark: _Toc305614600]CPU Execution Time Estimate
	[bookmark: _Toc289047425]System
	Execution Time (ms)

	Input
	0.25

	Gameplay
	1

	Physics
	1

	Artificial intelligence
	0.25

	Sound system
	0.25

	Animation
	0.5

	Lighting
	1

	Special effects
	1

	Rendering
	10

	Total
	15.25

[bookmark: _Toc305614654]Figure 2 – CPU Utilization
[bookmark: _Toc289047343][bookmark: _Toc305614601]Memory Utilization Estimate
	[bookmark: _Toc289047426]Subsystem
	Memory usage

	Compiled Script
	10MB

	Game Level
	200MB

	Models
	50MB

	Textures
	175MB

	Sounds
	50MB

	Total
	585MB

[bookmark: _Toc305614655][bookmark: _Toc289047344]Figure 3 – Memory Utilization
[bookmark: _Toc305614602]Assets Budget Estimate
	Entity
	Occurrence
	Polygons (per Unit)
	Polygons (max)

	Enemies
	0-5
	3,000 – 8,000
	40000

	Player
	1
	3000-8000
	8000

	Environment Objects
	50 – 100
	400 – 1,000
	100000

	Particle Effects
	0 – 50
	200 – 400
	20000

	Total
	–
	–
	168000

[bookmark: _Toc289047428]Figure 4 – Model Polygon Limits
[bookmark: _Toc305614603]Art Assets Budgets Estimate
Based on stress test results for polygon counts the development team established a theoretical maximum value of 1.5 million total visible polygons per frame for 30 frames per second gameplay. This budget is simply an estimate and game performance depends on many factors other than the size and level of detail of the art assets. These are conservative estimates in order to mitigate any potential issues with maintaining a stable frame rate further into the project.

	[bookmark: _Toc289047427]Type
	Max

	Texture Size
	4096 x 4096

	Dynamic Lights
	5

	Particles
	4000

Figure 5 – Asset Limits
[bookmark: _Acquired_Technology_and][bookmark: _Toc289047345][bookmark: _Toc305614604][bookmark: _Toc289047346]Acquired Technology and External Tools
[bookmark: _Toc305614605]Art Creation
	[bookmark: _Toc289047429]Tool
	Description

	Autodesk 3DS Max 2011
	Used to create original models and animations.

	Autodesk Mudbox 2011
	Used to facilitate the modeling process.

	Adobe Photoshop CS5
	Used to create and modify textures and materials.

	ActorX
	Plugin for 3DSMax used to export character animations.

	XNormal
	Used to generate normal, ambient occlusion, and displacement maps.

[bookmark: _Toc305614656]Figure 4 – Art Tools
[bookmark: _Toc289047348][bookmark: _Toc305614606]Software Engineering
	[bookmark: _Toc289047431]Tool
	Description

	Microsoft Visual Studio
	The IDE used to develop all UnrealScript on the project.

	Pixel Mine nFringe
	Integrates with Visual Studio and facilitates the development of unreal script code while providing support for syntax highlighting and code navigation.

[bookmark: _Toc305614657]Figure 5 – Software Engineering Tools
[bookmark: _Toc305614607]Level Design
	Tool
	Description

	Unreal Development Kit (June 2011)
	The game engine and framework that Arbor is built in.

[bookmark: _Toc305614658]Figure 6 – Level Design Tools
[bookmark: _Toc289047349][bookmark: _Toc305614608]Miscellaneous
	[bookmark: _Toc289047432]Tool
	Description

	Microsoft Excel
	Used to manage asset lists and the product backlog.

	Tortoise SVN
	Serves as a shared, collective repository with support for sub-versioning and reversion.

	Fraps
	Used for video and screen capture.

	Hypercam 2
	Used for video and screen capture.

	Microsoft Word
	Document editing

	Issue Manager
	Bug tracking

	Audacity
	Sound editing

	Notepad
	.ini editing

Figure 9 – Misc Tools
Components

[bookmark: _Toc305614659]Figure 7 – Components
[bookmark: _Toc301731347][bookmark: _Toc305614609]Component Descriptions and Risk Assessments
[bookmark: _Toc301731348][bookmark: _Toc305614610]Votive:
Description: The player’s surrogate in Arbor with which he can interact with game objects and the environment. Votive has the innate ability to run, jump, and push other objects. He also can acquire the ability to bounce off walls and the ground, glide in the air, and swing around with vines.
Impact: enormous; this needs to feel just right for a fun game
Probability: medium; lots of mechanics, requires a high level of polish
Visibility: colossal; work on this begins immediately, constantly visible to entire team
Mitigation: no mitigation possible; the game does not exist without this
Current Status: 12/9/11 – complete
[bookmark: _Toc301731349][bookmark: _Toc305614611]Sacred Bulb:
Description: A large, round physics object that can be pushed by the player and rolls around the environment. Has weight and can interact with other physics objects. This component also serves as a goal piece that the player must find and move in order to complete any level.
Impact: high; this object is a core component and part of every level
Probability: medium; physics object can be difficult to work with
Visibility: high; work on this begins immediately, constantly visible to entire team
Mitigation: the bulb plays a lesser role in the game, moves slowly
Current Status: 12/9/11 – complete
[bookmark: _Toc301731350][bookmark: _Toc305614612]Pillbug:
Description: Patrols along a short, straight path and rolls into a small ball when Votive comes close. The rolled pillbug is a physics object that interacts with the environment and weights down buttons and other objects.
Impact: medium; the pillbug is important but not a core mechanic
Probability: medium; physics object; pick up and throw mechanics are complex
Visibility: medium; work begins towards the beginning of development
Mitigation: less interaction with Votive and/or environment
Current Status: 12/9/11 – complete
[bookmark: _Toc301731351][bookmark: _Toc305614613]Slug:
Description: Patrols along a short, straight path and destroys Votive on contact.
Impact: medium; the slug is important but not core
Probability: low; very simple mechanics
Visibility: medium; implemented towards beginning of development
Mitigation: remove slugs; implement with Kismet/matinee
Current Status: 12/9/11 – complete
[bookmark: _Toc301731352][bookmark: _Toc305614614]Snapdragon:
Description: Immobile actor that kills votive if he passes in front. Placated by feeding a rolled up pillbug, allowing votive to pass safely.
Impact: high; important game mechanic
Probability: low; not complex, although aesthetics are vital
Visibility: medium; implemented towards beginning of development
Mitigation: remove snapdragons; implement with Kismet/matinee
Current Status: 12/9/11 – complete
[bookmark: _Toc301731353][bookmark: _Toc305614615]Camera System:
Description: Manages the position and orientation of the game camera. Customizable by level designers to control how each section of their levels are displayed.
Impact: high; important for all aspects of game
Probability: low; not terribly complicated, highly content driven
Visibility: high; implement immediately
Mitigation: simplify the camera system, remove configurability
Current Status: 12/9/11 – complete
[bookmark: _Toc305614616]Checkpoint System:
Description: Driven by placeable trigger volumes that save the game state when the player crosses them so that the level can be restored to that point upon player death.
Impact: high; critical for playability
Probability: low; relatively simple component
Visibility: high; implement immediately
Mitigation: simplify the checkpoint system, break sections up into separate levels
Current Status: 12/9/11 – complete

UnrealScript Files
	File Name
	Description

	A_AirJet.uc
	Object that can be toggled to levitate Votive when overhead.

	A_BounceComponent.uc
	Provides Votive with the ability to bounce off of walls and the ground.

	A_BulbReplicator.uc
	Updates and resets bulb position and state so it can be properly respawned.

	A_BulbSpawner.uc
	Respawns the sacred bulb during play.

	A_CameraComponent.uc
	The camera used in Arbor.

	A_CameraNode.uc
	Controls camera pathing during custom scene transitions.

	A_CameraVolume.uc
	A volume that defines a particular scene within a level. Each camera volume has a custom viewpoint for displaying that particular section in a specific way.

	A_CarryComponent.uc
	A component that allows votive to carry other objects in the game.

	A_Checkpoint.uc
	Triggers a restore point for Votive and the game state.

	A_Component.uc
	Base component type that other Arbor components derive from.

	A_ConcatenateStrings.uc
	Used to concatenate two different strings into one object.

	A_FracturedPawn.uc
	This is a fractured mesh representing Votive that can explode, used in death sequence.

	A_Game.uc
	The game type used by the engine, contains high-level configuration and game management.

	A_GrappleNode.uc
	An attachment point for Votive’s vine ability.

	A_HUD.uc
	The HUD type used by the game and related functionality.

	A_KActor.uc
	Basic physics actors that other Arbor physics actors derive from.

	A_KillVolume.uc
	A trigger volume that destroys the player and other objects upon contact.

	A_Miasma.uc
	A trigger volume that removes Votive’s powers as he passes through.

	A_PatrollerController.uc
	A base class for AI patrollers in Arbor. Contains basic pathing functionality.

	A_PatrollerPawn.uc
	Base pawn type used by all patrolling enemy classes in Arbor.

	A_PatrollerSpawner.uc
	Simple spawner that all patrolling enemy spawners derive from.

	A_Pawn.uc
	The basic pawn class that all pawns derive from.

	A_Pillbug.uc
	Basic physics actor for a rolled-up pillbug enemy.

	A_PillbugController.uc
	Handles pillbug-specific AI behavior.

	A_PillbugPawn.uc
	The physical pillbug pawn that animates and interacts with the game environment.

	A_PillbugReplicator.uc
	The replicator used for the pillbug class.

	A_PillbugSpawner.uc
	Used to spawn or respawn pillbugs as needed during play.

	A_PlayerController.uc
	The player controller class that handles player input and updates Votive.

	A_RBConstraint.uc
	Arbor physics constraint.

	A_RBConstraintSetup.uc
	Used to configure Arbor physics constraints.

	A_Replicator.uc
	Serves as a base for other Arbor replicators.

	A_SacredBulb.uc
	The physical sacred bulb object, rolls around with basic physics.

	A_SeqRespawn.uc
	Kismet event signaling a level restart or checkpoint restore.

	A_SlugController.uc
	Handles slug-specific AI behavior.

	A_SlugPawn.uc
	The physical slug pawn that animates and interacts with the game environment.

	A_SlugSpawner.uc
	The specific spawner used to create slugs during play.

	A_SnapDragonController.uc
	Animates the snap dragon pawn and manages its state transitions.

	A_SnapDragonPawn.uc
	The snap dragon object containing the mesh, animations, and sounds.

	A_SnapDragonSpawner.uc
	Respawns the snap dragon during play as needed.

	A_SwingingComponent.uc
	This component allows Arbor actors to from grapple nodes and simulates the physics involved.

	A_Twig.uc
	Twigs grow leaves that provide Votive with new abilities and powers.

	A_VineComponent.uc
	The vine is the version of the swinging component used by Votive.

	A_VotivePawn.uc
	The game pawn representing the player in the game.

	A_VotiveSoundPawn.uc
	A base pawn that the votive pawn derives from. Contains all the sounds and audio components used by Votive.

[bookmark: _Toc305614660]Figure 8 - UnrealScript Files
[bookmark: _Toc305614617]Software Configuration Management
[bookmark: _Toc305614618]Naming Convention
The naming convention for software development assets is simple. All files are prefixed with ‘A_’, followed with a descriptive name in upper camel case. The name itself should indicate the UDK type the asset ultimately derives from. For example, a asset derived from UDKPawn should contain the word Pawn in the name. Configuration files should be prefixed with the entire word ‘UDKArbor’.
[bookmark: _Toc305614619]Category/File Formats
	File
	Format
	Example

	Unrealscript File
	Upper camel case, A_ prefix
	A_VotivePawn.uc

	Config File
	Upper camel case,UDK Arbor prefix
	UDKArbor.ini

[bookmark: _Toc305614661]Figure 9 - File Format
Coding Standards
SkyGate maintains a rigid but thought out coding standard. This is essential to create maintainable code that is easy to integrate among multiple programmers.
Guidelines
1. Do not put curly braces on the same line as if or while statements
2. Use assertions and log statements liberally
3. Extreme programming once per week
4. Comment where additional explanation is necessary
5. Nouns for variables and classes, verbs for functions
6. At all costs, do not break the build
7. Write code that does not need to be revised later
	Category
	Convention
	Example

	Files
	A_ followed by upper camel case
	A_MyFile.uc

	Local variables
	lower camel case
	myVariable

	Normal functions, events
	lower camel case
	myFunction

	Enumerations
	upper camel case, plural
	LeafPowers

	Enumeration item
	enum name, underscore, upper camel
	LeafPower_Glide

	Struct
	upper camel case
	MyStructure

	Exec functions
	upper camel case
	SwitchLeafPower

[bookmark: _Toc305614662]Figure 10 - Naming Conventions
Additional Standards: http://udn.epicgames.com/Three/CodingStandard.html
[bookmark: _Build_Plan][bookmark: _Toc305614620]Build Plan
The Build Master (Casey Donnellan) locks the build one week prior to each milestone date. The build master must approve all further changes to code, levels, and art assets. The build begins two days before each milestone date. After the build begins, the build master only implements changes affecting the viability of the build (whether or not it runs on someone else’s computer).
After completing a successful build the build master installs it and attempts to play. If this is successful, the build master attempts to repeat this process on another computer. This is repeated each time a new build is performed. If issues are encountered during this process resolving them becomes the team’s highest priority.
[bookmark: _Toc305614621]Backup Routines
Each team member’s computer is equipped with SVN. Each team member saves their work frequently and commits changes to SVN after completing each task. After each build, the build master burns a backup DVD of all original code, level, and art assets. The DVD is stored in a safe place. The lead software engineer uses SVN to restore the project, should a catastrophic event occur. The backup DVD is a last resort only.
Should a team member commit data that breaks the build and it is not immediately apparent how to repair the damage, the lead software engineer will branch the SVN repository before a point the bad commit was made. Any team members incapable of resolving their technical issues will delete their local data and get a fresh checkout from SVN.
[bookmark: _Toc305614622]Version Control
SkyGate maintains all development assets under source control. Doing this is useful for several reasons. First, it allows team members to simultaneously work on the same document(s) and merge them later. It also provides the invaluable ability to “roll back” the project to a previous date in order to sidestep catastrophic changes. Finally, source control provides an excellent way of seeing exactly what each person contributed to the project.
[bookmark: _Toc292696494][bookmark: _Toc305614623]General Steps for Committing to Source Control
1. Update before committing.
2. Resolve all conflicts.
3. Thoroughly re-test the portion of the project the commit is affecting.
4. Write a descriptive comment about the commit.
[bookmark: _Toc292696495][bookmark: _Toc305614624]SVN Client
SkyGate uses the 64-bit version of TortoiseSVN as the SVN client, available at http://tortoisesvn.net.
[bookmark: _Toc292696496][bookmark: _Toc305614625]Checkout from the SVN
Before using SVN for the first time, a user must first perform a full checkout of the repository. In the folder C:\UDK, right-click -> SVN Checkout to bring up the following dialog:
[image:]
[bookmark: _Toc292696531][bookmark: _Toc305614663]Figure 11: SVN Checkout
SkyGate’s SVN repository URL is: http://ghsrv.ecsrv.smu.edu/svn/c15_Team_skygate/. The checkout directory should be C:\UDK\. The username needed to access the SVN is the first part of a team members SMU email address, and the password is the team member’s SMU student ID. If prompted by the warning that the target folder is not empty, select ‘Yes’.
[bookmark: _Toc292696497][bookmark: _Toc305614626]SVN Folder Structure
This details where development files are located:
	[bookmark: _Toc292696550]Folder
	Usage

	UDK
	Base working directory

	UDK\Docs
	Documentation

	UDK\Art
	Raw art assets

	UDK\Audio
	Raw audio assets

	UDK\UDK-2011-06\Development\Src\Arbor
	Arbor source code

	UDK\UDK-2011-06\UDKGame\Config
	UDK config files

	UDK\UDK-2011-06\UDKGame\Content\Levels
	Arbor levels

	UDK\UDK-2011-06\UDKGame\Content\ArborPackages
	Arbor packages

Table 12: SVN Folder Structure

[bookmark: _Toc292696498][bookmark: _Toc305614627]Updating from the SVN
To update to the latest files from the SVN, simply go to the base folder, C:\UDK\ and right-click -> SVN Update:
[image:]
[bookmark: _Toc292696532][bookmark: _Toc305614664]Figure 12: SVN Update
[bookmark: _Toc292696499]This results in a dialog box that lists all the changes since the last update.

[bookmark: _Toc305614628]Adding to the SVN
Unversioned files and folders can be ‘added’ to the SVN – letting SVN know that you want to version those files sometime in the near future, but not committing (the act of actually sending them to the repository) to the SVN just yet. To do this, select the files to add, and right-click -> TortoiseSVN -> Add.

[image:]
[bookmark: _Toc292696533][bookmark: _Toc305614665]Figure 13: Adding to SVN

[bookmark: _Toc292696500][bookmark: _Toc305614629]Committing to the SVN
Committing is the process of actually sending your changes and added files to the SVN repository. To commit all changes across the project, go to the base folder C:\UDK\, and right-click -> SVN Commit. This brings up a dialog window that details all changes made, and where you can deselect items, or select previously un-added files to be committed (which has the same effect as adding and committing separately).
[image:]
[bookmark: _Toc292696534][bookmark: _Toc305614666]Figure 14: Committing to SVN
Enter a descriptive message detailing the commit in the dialogue box under “Recent Messages.”
[bookmark: _Toc292696501][bookmark: _Toc305614630]Resolving Conflicts
Conflicting files can occur from time to time when you update, and SVN is not able to figure out automatically how to merge two differing files. SVN creates three files when this happens:
· <filename>.<ext>.mine: the file with your modifications
· <filename>.<ext>.r<older revision #>: the file before you made modifications
· <filename>.<ext>.r<newer revision #>: the file that is currently on the SVN, and has a conflict with your file
To figure out how to resolve the conflict, right click on the conflicted file -> Edit conflicts.
[image:]
[bookmark: _Toc292696535][bookmark: _Toc305614667]Figure 15: SVN Conflicts
This brings up a tool called TortoiseMerge, which can help visually compare the conflicting files. Use TortoiseMerge to merge the two files manually, or choose to discard either the local version or the version on the SVN. However, before attempting this, consult with the person to whom the conflicted file belongs.
[image:]
[bookmark: _Toc292696536][bookmark: _Toc305614668]Figure 16: Using TortoiseMerge
There are several choices to make when using TortoiseMerge to resolve conflicts. By selecting a text block in either the left or the right pane and right clicking, you can opt to use that text block as the correct version, or insert it before or after the conflicting text block. You can also edit the final version manually by typing into the lower pane, titled ‘Merged - <file>.<ext>’.
After editing the conflict; save the merged version with Ctrl+S. Before marking the conflict as resolved, be certain the changes made are correct, as the new file overwrites and takes the place of the old file! Finally, select from the menu bar: Edit -> Mark as resolved. You can then close TortoiseMerge and proceed to committing the new, edited version.
If ever in doubt about merging files and resolving conflicts, consult with a member of the programming team or the Lead Software Engineer for advice.

[bookmark: _Toc305614631]Quality Assurance
[bookmark: _Toc289047373][bookmark: _Toc305614632]Component Testing
Each individual must test their work to the best of their ability prior to integration with the main build. Each component must be functional to specification and meet project quality standards.
[bookmark: _Toc289047374][bookmark: _Toc305614633]Integration Testing
After successfully testing individual components individual, begin integrating work with the main project. Do not integrate during a lock down. The Build Plan section of Software Configuration Management contains a description of a lock down. First, the individual must update the local working repository to synchronize with the latest build. If updates were present, the user should repeat integration testing. Once fully synchronized and component testing completes, the work uploads to the main build. Developers should label each commit comment with their name and describe the contents of the commit. Example: “Donnellan, modified bulb density.”
To ensure everything is working and integrated smoothly a daily smoke test runs at the beginning of core hours. If problems arise, the build may be temporarily reverted for the day so that individuals may continue to work.
[bookmark: _Toc289047375][bookmark: _Toc305614634]Kleenex Test Plan
Development uses Kleenex testing after the Vertical Slice and Alpha milestones. During testing, the team observes how the user experiences the game without instruction or interference. The team members administering the test take notes and give the tester a questionnaire following the play testing session. Developers accumulate the notes and questionnaires and hold occasional design meetings to discuss changes.

[bookmark: _Toc289047376][bookmark: _Toc305614635]Bug Tracking
Issue Manager is a browser-based bug tracking database used by team SkyGate to store, manage, and track the progress of all known project issues. All team members must individually enter new issues into the database as they encounter them and update them as well as when new information becomes available.
Both the producer and the lead engineer manage the database. When a new issue enters the database, the user immediately assigns it to the appropriate individual for resolving that issue. If the assignment is not obvious, a user may temporarily assign an issue to either the producer or the lead engineer. Issue Manager automatically e-mails team members in the database when a bug is assigned to them. No issue may be closed out within the database until the solution is tested and confirmed. Issues and bugs are resolved in order of priority, from highest to lowest.
[image:]
[bookmark: _Toc289047442][bookmark: _Toc305614669]Figure 17 – Issue List
[bookmark: _Toc246739939][bookmark: _Toc276303657][bookmark: _Toc289047377][bookmark: _Toc305614636]How to Use Issue Manager
[bookmark: _Toc246739940][bookmark: _Toc276303658][bookmark: _Toc289047378]Access the Issue Manager
Navigate your web browser to: http://ghsrv3.ecsrv.smu.edu/c15_Team_skygate/
 The username is first part of your SMU email. The password is your SMU ID#.
[bookmark: _Toc246739941][bookmark: _Toc276303659][bookmark: _Toc289047379]View Your Issues
Select the “Assigned to me” link from the Bookmarks box. A table will appear showing all issues that are assigned to you.
[bookmark: _Toc246739942][bookmark: _Toc276303660][bookmark: _Toc289047380]Add a New Issue
1. Select the “Add New Issue” link.
[image:]
[bookmark: _Toc289047443][bookmark: _Toc305614670]Figure 18 – Add New Issue Command

[image:]
[bookmark: _Toc289047444][bookmark: _Toc305614671]Figure 19 – Add New Issue Dialog
2. Fill out the Issue and Description boxes when reporting the issue.
3. Assign a priority.
4. Leave Status as “Open”.
5. Use the latest build as your version number.
6. Assign the bug to the appropriate person on the list.
7. Attach a relevant file if needed.
8. Click “Add” to add the bug to the database.
[bookmark: _Toc246739943][bookmark: _Toc276303661][bookmark: _Toc289047381]Mark Your Issue
To mark an existing issue, click its link in the list on the main page.
[bookmark: _Toc305614672][bookmark: _Toc289047445][image:]Figure 20 – Mark an Issue Command
[image:]
[bookmark: _Toc289047446][bookmark: _Toc305614673]Figure 21 – Mark an Issue Dialog
From here, other uses can modify the issue’s priority or assigned, test the issue, approve the fix, provide a response, or add a new file.
[bookmark: _Toc246739944][bookmark: _Toc276303662][bookmark: _Toc289047382]Close an Issue
Close an open issue by changing its status to “Closed.” Team members must get approval from the Producer or Lead Engineer to verify that the issue is resolved before closing the issue.
[bookmark: _Toc297606616][bookmark: _Toc305614637]
Arbor Questionnaire
1) Was the game fun? Y/N:

2) What parts of the game were most fun for you?

3) On a scale of 1 to 10, (with 1 being the lowest and 10 being the highest) how difficult was this game?

4) Did you feel the controls were easy to use and understand? Y/N:
a. If you did not find the controls to be easy to understand, please explain why.

5) Could you relate to the main character, Votive? Y/N:

6) Did you understand the basic story conveyed through playing the game? Y/N:
a. Please tell us what you thought the story is about.

7) Did you feel that the game and story had a higher meaning? Y/N:
a. What do you think the higher meaning is about?
__
__
__
8) If you could change anything about the game, what would it be?
__
__
__
__
9) Did you ever find the bonus level? Y/N:

10) Were there any moments that felt scary or intense to you? Y/N:
a. If so, which ones made you feel that way?
__
__
__
__
11) What did you think about the environment?
__
__
__

12) What was your favorite enemy?

13) What was the most memorable part of the level?

14) Did you ever become stuck and not know how to continue? Y/N:
a. If so, where?
__
__
__
__
15) What was your favorite leaf power?

16) What was your least favorite leaf power?

17) On the scale of cute to horrifying (1 to 10) what was your opinion of the Snapdragon?

18) Did you find any of the in-game animations jarring or not natural? Y/N:
a. If so, please explain where and why.
__
__
__
__
19) What are your final thoughts on the game; if there are any suggestions for improvements please list them here.
__
__
__
__
__
__
__
__
__
__
[bookmark: _Toc289047384]
[bookmark: _Toc305614638]Tutorials
[bookmark: _Toc289047385][bookmark: _Toc305614639]Advanced Scripting - UnrealScript
\\ghsrv\users\C15\TGP2\Team02-Unrealscript
[bookmark: _Toc289047386][bookmark: _Toc305614640]Anim Tree
\\ghsrv\users\C15\TGP2\Team04-AnimTree
[bookmark: _Toc289047387][bookmark: _Toc305614641]AI
\\ghsrv\users\C15\TGP2\Team05-AI
[bookmark: _Toc289047388][bookmark: _Toc305614642]Basic Scripting - Kismet
\\ghsrv\users\C15\TGP2\Team03-Kismet
[bookmark: _Toc289047389][bookmark: _Toc305614643]Build/Installer
\\ghsrv\users\C15\TGP2\Team01-UPK-Build-Installer-SVN
[bookmark: _Toc289047390][bookmark: _Toc305614644]Lighting
\\ghsrv\users\C15\TGP2\Team11-Lighting
[bookmark: _Toc289047391][bookmark: _Toc305614645]Materials
\\ghsrv\users\C15\TGP2\Team12-Material_Editor
[bookmark: _Toc289047392][bookmark: _Toc305614646]Physics/Collision
\\ghsrv\users\C15\TGP2\Team14-Physics_and_Collision
[bookmark: _Toc289047393][bookmark: _Toc305614647]Particle Effects
\\ghsrv\users\C15\TGP2\Team09-Particle_Editor
[bookmark: _Toc289047394][bookmark: _Toc305614648]Matinee
\\ghsrv\users\C15\TGP2\Team10-Matinee
[bookmark: _Toc289047395][bookmark: _Toc305614649]Terrain
\\ghsrv\users\C15\TGP2\Team13-Terrain Editor
[bookmark: _Toc289047396][bookmark: _Toc305614650]UI/HUD
\\ghsrv\users\C15\TGP2\Team08-Menus_HUD
[bookmark: _Toc289047397][bookmark: _Toc305614651]Weapon Set-up
\\ghsrv\users\C15\TGP2\Team06-Weapon_Setup
[bookmark: _Toc289047398][bookmark: _Toc305614652]Sound/Music
\\ghsrv\users\C15\TGP2\Team15-Sound and Music

SkyGate	Page 1 of 35	12/9/2011

image3.wmf
Votive

Rolled Pillbug

Camera

Checkpoints

Enemies

Pillbug

Slug

Snapdragon

Sacred Bulb

oleObject1.bin
�

�

Votive

Rolled Pillbug

Camera

Checkpoints

Enemies

Pillbug

Slug

Snapdragon

Sacred Bulb

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.png

image2.jpeg

